Nuclear Energy and Special Relativity (PB.2)

The nuclide ²¹⁴₈₂Pb emits an electron and becomes nuclide X. Which of the following gives the mass number and atomic number of nuclide X?

Mass <u>Number</u>		Atomic <u>Number</u>
(A)	210	80
(B)	210	81
(C)	213	83
(D)	214	81
(E)	214	83

A 50,000 W radio station transmits waves of wavelength 4 m. Which of the following is the best estimate of the number of photons it emits per second?

- (A) 10^8
- (B) 10^{22}
- $(C) 10^{30}$
- (D) 10⁴⁰
- (E) 10⁵⁶

Cobalt 60 is a radioactive source with a half-life of about 5 years. After how many years will the activity of a new sample of cobalt 60 be decreased to 1/8 its original value?

- (A) 2.5 years
- (B) 5 years
- (C) 10 years
- (D) 15 years
- (E) It depends on the original amount of cobalt 60.

A muon, with a lifetime of 2×10^{-6} second in its frame of reference, is created in the upper atmosphere with a velocity of 0.998c toward the Earth. The lifetime of the muon, as measured by an observer on the Earth, is most nearly

- (A) 3×10^{-2} s
- (B) 3×10^{-3} s
- (C) 3×10^{-4} s
- (D) 3×10^{-5} s
- (E) 3×10^{-6} s

The operator of a space station observes a space vehicle approaching at a constant speed v. The operator sends a light signal at speed v toward the space vehicle. The speed of the light signal relative to the space vehicle is

- (A) c + c
- (B) c v
- (C)
- (D) $v/\sqrt{1-v^2/c^2}$
- (E) $c\sqrt{1-v^2/c^2}$

Rods P and Q are at rest in an inertial reference frame and oriented as shown above. Both rods have length L in this reference frame. A person moves at a relativistic speed in the p direction. Which of the following would be the lengths, as compared to L, observed for these rods by the person?

<u> </u>	<u> </u>
(A) Less than L	Less than L
(B) Less than L	L
(C) Less than L	Greater than 1.
(D) L	Less than 1.
(E) L	<i>l.</i>

Nuclear Energy and Special Relavity (pg. 1)

Questions 162 deal with nuclear fission for which the following reaction is a good example.

 $\frac{235}{92}U + \frac{1}{0}n \rightarrow \frac{138}{56}Ba + \frac{95}{36}Kr + neutrons + released energy.$

- 1. The total number of free neutrons in the products of this reaction is
 - (A) 2
 - (B) 3
 - (C) 4
 - (D) 5
 - (E) 6
- 2. Which of the following statements is always true for neutron-induced fission reactions involving ²³⁵/₄₂U?
 - I. The end products always include Ba and Kr.
 - II. The rest mass of the end products is less than that of $\frac{23^2}{92}U + \frac{1}{9}n$.
 - 111. The total number of nucleons (protons plus neutrons) in the end products is less than that in $\frac{235}{92}U + \frac{1}{0}n$.
 - (A) II only
 - (B) III only
 - (C) I and II only
 - (D) I and III only
 - (E) I. II, and III
- 3. When ¹⁰B is bombarded by neutrons, a neutron can be absorbed and an alpha particle (⁴He) emitted. If the ¹⁰B target is stationary, the kinetic energy of the reaction products is equal to the
 - (A) kinetic energy of the incident neutron
 - (B) total energy of the incident neutron
 - (C) energy equivalent of the mass decrease in the reaction
 - (D) energy equivalent of the mass decrease in the reaction, minus the kinetic energy of the incident neutron
 - (E) energy equivalent of the mass decrease in the reaction, plus the kinetic energy of the incident neutron
- At noon a radioactive sample decays at a rate of 4,000 counts per minute. At 12:30 P.M. the decay rate has decreased to 2,000 counts per minute. The predicted decay rate at 1:30 P.M. is
 - (A) 0 counts per minute
 - (B) 500 counts per minute
 - (C) 667 counts per minute
 - (D) 1.000 counts per minute
 - (E) 1.333 counts per minute

- Quantities that are conserved in all nuclear reactions include which of the following?
 - I. Electric charge
 - II. Number of nuclei
 - III. Number of protons
 - (A) I only
 - 3 II only
 - (C) I and III only
 - (D) II and III only
 - (E) I. II. and III
- 6. A negative beta particle and a gamma ray are emitted during the radioactive decay of a nucleus of ²¹⁴₈₂Pb. Which of the following is the resulting nucleus?
 - (A) $^{210}_{80}$ Hg
 - (B) $\frac{214}{81}$ Tl
 - (C) 213Bi
 - (D) 214 Bi
 - (E) ²¹⁸₈₄Po

- 7. The graph above shows the decay of a sample of carbon 14 that initially contained N_0 atoms. Which of the lettered points on the time axis could represent the half-life of carbon 14?
 - (A) A
 - (B) B
 - (C) C
 - (D) D
 - (E) E